Spahr Metric Metal

421 McGhee Road
Winchester, VA 22603

How IBM went metric

How IBM went metric

From the March/April 2008 issue of USMA’s Metric Today.

by Don Hillger

In 1972 IBM revealed its program for going metric, with metric measurements gradually becoming the standard in design, test, manufacture, and service. With manufacturing facilities in more than a dozen countries, IBM had been using dual inch/millimeter dimensions on all drawings since 1964, but that step was intended only to aid design and production in metric nations. However, procurement of inch-based supplies abroad became a costly problem. Alternatives were to buy metric parts and alter them; buy non-metric parts and pay a premium; or import non-metric parts from the US. All three options were costly.

IBM carried out a metrication feasibility study in 1966. The ad hoc metric committee study recommended increasing use of the metric system. It became apparent that working in two systems was a substantial cost. Therefore, IBM’s corporate metric panel recommended that it was appropriate for them to move ahead, independently of the US’s taking a position on metrication at the time. A metric inter-divisional steering group, consisting of metric coordinators from each IBM operating unit, was formed to coordinate efforts.

The development and implementation of metric changeover programs was left to individual divisions and operating units, which moved at varying paces. Product development and manufacturing was primary, followed by field engineering and sales. The intent of this process was to keep as close to IBM’s normal management and decision-making process as possible without setting up extra functions and organizations. Going metric was part of their effort at optimizing the international manufacturing process.

IBM called for the preferred use of SI units in all product documentation and communication in engineering, manufacturing, and field engineering. Non-product areas were not considered part of the program unless changeover was the lowest-cost alternative. Since 1976, all new products have been designed principally in metric.

Hybrid products persisted for some time. Non-metric components were included in predominantly metric designs when metric parts were unavailable. In other cases, new products sometimes incorporated existing components from older, non-metric designs already in use. Some of the need for hybrid measurements was due to the international leadership of America in the data processing industry, which lead to worldwide standards based on US measures (for example, the width of tape and punched cards in use at the time!).

At the time, electrical components were a big problem because the electronics and electrical industries were not moving as quickly toward metric. This resulted in some inch-based components in metric designs, although in some cases, IBM purchased metric electrical components abroad, when that was cost effective.

Other supply difficulties were circumvented by wider tolerances, such as for sheet metal procurement. Metric fasteners, although initially a procurement problem, gradually became more common. IBM adopted ISO and IFI (Industrial Fastener Institute) fastener standards in all but limited special applications. Blue zinc color coding of metric fasteners aided in repairs.

The idea was to avoid mixing metric and non-metric units within an assembly. Instead, entire units or assemblies were designed in the same measurement system whenever possible. Field service representatives were given a new set of 11 metric tools and a short self-study course. Completion of the metric course was a training prerequisite for work on new metric products.

Service manuals for metric products continued to give units in dual dimensions, when appropriate, for customers’ convenience, e.g., giving Fahrenheit as well as Celsius temperatures because many users might not have Celsius thermometers. However, portions of the manuals used mostly by IBM service personnel gave all linear dimensions in metric only, to encourage them to “think metric”.

A two-phased, modular employee-training program was developed in-house and administered as needed. The first phase of the training covered basic metric awareness and use of metric tools. Each employee was given only the metric training that applied to the job. The basic training was meant for most employees, even secretaries, for using metric terms and symbols.

In the second phase, engineers, quality control and inspection personnel, and floor managers were given more advanced training covering ISO standards for such things as fasteners as well as surface finish standards and the limits and fits system. Training time varied, up to a maximum of 22 hours.

In addition, suppliers were given a metric-awareness seminar in conjunction with regular business sessions at IBM. They were also given abridged standards documents and a card explaining rounding rules for cases where it was necessary to convert to non-metric measurements.

When IBM reached its halfway point in 1977, the fifth year of its 10-year commitment to metrication, metric rather than inch dimensions were used in manufacturing. At this point, metric values came first, with the ultimate goal to dimension only in millimeters. Manufacturing equipment was either converted or replaced, as appropriate. All related activities were on target towards the objective of having all IBM products predominantly designed based on metric measurements by 1982.

Two persistent problems at the halfway point seemed to slow the change. One was the normal resistance to change that occurs with any new system, and it was handled through IBM’s comprehensive employee education program. The other problem, because of the company’s early approach to metrication, was the lack of availability of metric components at the time. This problem was more difficult to resolve, because it involved organizations outside of IBM.

In 1980, IBM’s director of standards and data security, who was also vice-president of the American National Standards Institute (ANSI), was awarded the Astin-Polk International Standards Medal for distinguished service in promoting trade and understanding among nations. This award was likely due to the adoption of international standards by IBM when it went metric.

Material for this article came from articles about IBM’s conversion to metric, in published literature and metric newsletters.